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A Noniterative Method for the Generation of 
Orthogonal Coordinates in 

Doubly-Connected Regions* 
By Z. U. A. Warsi and J. F. Thompson 

Abstract. In this paper a noniterative method for the numerical generation of orthogonal 
curvilinear coordinates for plane annular regions between two arbitrary smooth closed curves 
has been developed. The basic generating equation is the Gaussian equation for a Euclidean 
space under the constraint of orthogonality. The resulting equation has been solved analyti- 
cally for the case of isothermic coordinates. A coordinate transformation then yields noniso- 
thermic coordinates in which the outgoing coordinate can be distributed in any desired 
manner. The method has been applied in many cases and these test results demonstrate that 
the proposed method can be readily applied in a variety of problems. 

1. Introduction. The problem of generating orthogonal or nonorthogonal curvilinear 
coordinates (, q in arbitrary curvilinear domains is a problem of current interest in 
fluid mechanics and other branches of physics and engineering. The idea of 
generating coordinate meshes by numerically solving a set of partial differential 
equations under the boundary-geometric data as the boundary conditions arose with 
the work of Winslow [24]. Later Barfield [2], Chu [4], Godunov and Prokopov [10], 
Amsden and Hirt [1], and Potter and Tuttle [17] used this concept in generating 
coordinate curves for specific physical situations. The whole concept has, however, 
been used in a much organized manner by Thompson, Thames and Mastin [20] in 
developing and coding [21] the computer program for generating nonorthogonal 
coordinates in a variety of two-dimensional situations. The user, however, has no 
control over the orthogonality or nonorthogonality of the generated coordinates. 

The underlying basis of all the above methods, including that of Pope [16], Starius 
[19], Middlecoff and Thomas [14], and Mobley and Stewart [15] is the choice of a set 
of coupled partial differential equations. Two exceptions to the above are the 
methods of Eiseman [7], whose method is of an algebraic-geometric nature, and that 
of Davis [6], which is based on the Schwarz-Christoffel transformation of the 
complex variable theory. 

In the differential equations method, except for the work of Starius [19] where a 
hyperbolic system of equations is used, all other methods rest on the system of 
elliptic partial differential equations of the Laplace form. These equations are in 

Received November 10, 1980. 
1980 Mathematics Subject Classification. Primary 14D99, 3 1A05, 30C60. 
Key words and phrases. Grid generation, mappings, potential theory. 
* This work has been supported in part by the Air Force Office of Scientific Research under Grants 

AFOSR No. 76-2922 and No. 80-0185. 

?01982 American Mathematical Society 
0025-5718/81/0000-0083/$04.75 

501 



502 Z. U. A. WARSI AND J. F. THOMPSON 

essence a set of arbitrary differential constraints on the distributions of the funda- 
mental metric coefficients gij. 

In this paper we develop a new approach by providing another differential 
constraint on the g&j's which is not based on any arbitrary assumption. This 
relationship is already available to hand by the condition that the coordinates are to 
be generated in a Euclidean space. The most natural choice is then to use the 
Gaussian equation [8] for a Euclidean space, viz., a space of zero curvature. This 
fundamental equation is one equation in three unknowns, gl, g12 and g22, which 
becomes a deterministic equation in one unknown only in the case of isothermic 
coordinates, i.e., g12 = 0 and g22 = g,1. This equation has been solved in an exact 
fashion. Further, from the earlier work of Potter and Tuttle [17], we have the result 
that in the case of orthogonal coordinates the ratio g1 1/g22 can be taken as a product 
of functions of ( and q. This result has been used to show that the result obtained for 
isothermic coordinates (g22 =g11) can be used to provide the solution for noniso- 
thermic orthogonal coordinates (g22 # g,1) by a coordinate transformation. This 
coordinate transformation is dependent on the user's choice, that is, how one wants 
to redistribute the coordinates in a given region. 

The method developed on the preceding ideas therefore provides a noniterative 
closed form analytic solution for the case of two-dimensional orthogonal coordi- 
nates. Most of the numerical work is in the numerical quadratures and summation of 
a truncated Fourier expansion. Some test result cases are demonstrated in Figures 
3-8, [22]. 

2. Formulation of the Problem. All methods of numerical coordinate generation in 
a two-dimensional plane and classified under the method of "elliptic equations" 
([20], [21]) have depended invariably on the solution of the Poisson equations for the 
curvilinear coordinates ((x, y) and q(x, y) which may be given the forms 

(la) V Q(g 

g 

where P(t, q) and Q(t, 7q) are arbitrarily specified control functions, and gij are the 
fundamental metric coefficients. Equation (1) can also be written in the following 
forms: 

(2a) gll12'2 - 2g12F12 + g22Fl= g22P(, 11), 

(2b) gllr222 - 2g12122 + g22F11 = g11Q(t, 'q), 

where Ujik are the Christoffel symbols of the second kind 

= g"[jk, 1], 

(2c) [jk 1] - 2 ( agJ+ agJ _ 
) 2 

aXk 8x' ax'' 
g =g11g22-(912)2. 

From (1) and (2) we conclude that by choosing P and Q arbitrarily (which can 
also be set equal to zero), one specifies a constraint between the gij and their first 
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partial derivatives. The choice of (1) as a set of generating equations is due to the 
fact that these equations are the simplest elliptic equations satisfying an extremum 
principle. Besides the simplicity of their forms and the ease with which these 
equations or their inverted forms can be solved on a computer, it remains a fact that 
the coordinates in two dimensions always satisfy a set of Laplace-form of equations 
no matter which other equations or methods are used to generate them. The 
appearance of P and Q in (1) cloud this fact as they are left completely unspecified. 
To clarify this point we have inserted (2) to show that the specification of P and Q 
amounts to specifying a set of differential constraints on the gij's. This automatically 
raises a question: is there a differential constraint on the gij's which must always be 
satisfied no matter what method is used to generate the coordinates or what P and Q 
are? In essence, the method developed in this paper is based on an equation which is 
obtained by addressing the above question. 

Since the purpose is to generate curvilinear coordinates in a plane, we consider the 
equation of Gauss which for zero curvature is, (cf. [8]), 

(3) ( F ) _ a ( gF1 . ) 

Equation (3) is the fundamental equation which must always be satisfied by the 
metric coefficient gij in a plane. Below we proceed with the consequences of this 
equation and then particularize it for the case of orthogonal coordinates. 

Equation (3) implies the existence of a function a(t, q) which is commutative in 
cross derivatives, i.e., ax = at,. Thus (3) is automatically satisfied by the equations 

(4) at = ,2 = 

Specifically, a is the angle of inclination with respect to the x-axis of the tangent 
to the coordinate line q = const directed in the sense of increasing values of the 
parameter (. In terms of a, the first partial derivatives of x and y are 

(5a) xt = (gIcos ax, yt= gsin a, 

(5b) xn = 1 g92 cos a- + g sin a), 

(5C) yn =- COS ( Xgcsa- 912 sin xx), 

and thus x and y are given by the line integrals 

(6a) x f g11 cos a d? + (912 cos a + g sina) dq] 

(6b) y = - g 1I sin a d - 1 (g cos a - g12 sina) dj. 
[ ~~~~~ii~~ j- 
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We note in passing that the inverse relations to (5) are 

(7a) (x = (4 cos a-g12 sin a)/ gg1, 

(7b) ( = -(g12cosa + gsin a)/lgg, 

(7c) 81x = vgi /g sin xx, 

(7d) By = g1 1/g cos a. 

From (4), we also find that 

(8) a = fg (r,, d + 12 dq). 

The expressions from (5)-(8) imply that if the metric coefficients g,j are known by 
some means, then the Cartesian coordinates x and y, the angle a, and all the partial 
derivatives of x and y can be obtained in a simple way. 

The differential constraint provided by (3) is a quasilinear partial differential 
equation involving all the three metric coefficients; g1 1, g12 and g22. For the 
evaluation of these three unknowns, one needs to provide two more differential or 
algebraic relations between these coefficients. It will be seen shortly that in the case 
of isothermic coordinates, (3) provides a deterministic equation in a single metric 
coefficient. 

For orthogonal coordinates, 

(9) 912 XtX? +ytyn = O, 

so that there exists a function F > 0 such that 

(10) Xq = -Fyt, yq = Fxt. 

Substituting (9) in (3), we obtain the equation 

(11) at[~~Fgllat all) a Fg I at,q 

where 

(12) F2 = 

and 

(13) g = ( 1Fgl)2. 

2.1 Case of Isothermic Coordinates. Isothermic coordinates ( and 'q are such that in 
these coordinates the length element ds is given by 

(ds)2 = 2(de2 + dq2). 

Thus, in isothermic coordinates, 

912 = 0 g22 = gl1 (X2) 

so that F = 1, and (11) becomes a simple linear equation 

a 2p a 2p 
(14) ?~ + 0 
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where 

(15) P=ln(glI). 
Thus the Gauss equation for a plane reduces to an equation of the Laplace form in P 
when the coordinates t and q are isothermic. 

r 

r 

) n 

2* 
-4 

0 r3 

Transformed Plane 

(Natural Coordinates) 

FIGURE 1 
Physical and transformedplanes 

We now pose the problem of generating isothermic coordinates between an 
annulus bounded by two arbitrary smooth closed curves. Referring to Figure 1, let 
the boundary "2 of a bounded region Q in a Euclidean two-dimensional space be a 
simple closed curve x = x.((), y = y.((), with a uniformly turning tangent. In the 
region 2, let Us be an annular subregion bounded by the inner boundary F' and the 
outer boundary I2. The region Us is to be mapped onto a rectangular region R in the 
hrq-plane so as to have 

(16) ( ) } s < '00 

where x and y are periodic in the (-argument, and -, 6, are the actual parametric 
values associated with the inner and outer boundaries, respectively. We now assume 
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that we have established a method of enumeration in the (-parameter which is such 
that there is an orthogonal correspondence between the same (-points on the inner 
and outer boundaries; see Section 2.2. Based on this (-distribution, we easily pick 
out the values of x and y and so by differentiation the values of P. Thus the 
boundary conditions for (14) are 

(17) -P (- ) atll-'qf |* 

where the subscripts ,B and xc denote the inner and outer boundaries, respectively. 
The periodicity requirement is that 

(18) P(t, 71) = P(t + 27r, q). 

A general analytic solution of (14) under the boundary and periodicity conditions 
(17) and (18) is 

00 

P(gq) =aO + K + E (a,cos nt + b0sin ()sinh n(,q1o - )/sinhnq0o0 
n= 1 

(19) 00 

+ E (cn cos nt + dn sin nt)sinh n-q/sinh nwq0, 
n= I 

where 

(20) K = (co-aO)lq. 

and 

(21a) ao f2| Pfl(() d, co f2| PT (,) dt, 

(21b) a, =()cos n d, b,, - P()sinPn$d 

(21c) C f-| PO()cosnd$, d, =-| P,,(()sin nt dE. 

Since Pft(() and P00(e) are prescribed functions, the values of the coefficients 
ao,... , dn can be obtained by numerical quadratures. 

For orthogonal coordinates, 

(22a) a- 1 ag1 1 a ag22 
2 g a -?1 ~ 2g a 

so that, for the case of isothermic coordinates (g22 g,,1), we have 

(22b) 12 a= 1 - a, at 

** There is no loss of generality in setting the parametric value 0o = O. The value r10O must be 
interpreted as the difference between the actual values of q at the outer and inner boundaries. 
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Using the expression for P given in (19), we obtain an exact expression for a((, q) by 
integration as 

a((,O) + coshn (. )(bn cosn- a0 sin nt) 
2 sinh n h 

+0 Cosh nq 
+ 2 sin (Cn sin n~ - dn cos n~) 

(23) - cosh nqm,, 

:ETsnhnq,,(b0cos 
n - a,,sin n~) 

00 1 

n1 2 sinh n7 (c sin n - d cos nO). 

Having determined g11 = exp(P(t, q)) and a(t, 71), we can find the Cartesian 
coordinates 

x(, 7q) = x(t,O) + | g22 sina dq, 

(24) y(t,q) y(t,O) + 
g 2cos ad'q, 

where, according to the foregoing analysis g22 = g I. 

The preceding analysis thus completes the solution technique for isothermic 
coordinates in an annulus bounded by arbitrary closed curves. 

2.2 Choice of (-Points on Boundary Curves. As noted earlier (cf. discussion after 
Eq. (16)), the choice of those c-points on the inner and outer boundary curves which 
are in orthogonal correspondence is crucial to the success of the method. In this 
connection we note that for isothermic coordinates, from (7) by cross differentiation, 
the usual condition equations 

(25) v2t=O, v2-q=0 

are available. These equations, besides being satisfied in the field, must also be 
satisfied at the boundaries of the annulus. The second equation in (25) has the 
meaning that each coordinate q-const, including the boundaries, must be free from 
sources or sinks. Since the first equation in (25) is implicitly satisfied in the field by 
the solution of (14), we have only to choose the (-points on the boundaries so that it 
is again satisfied. 

We now propose an indirect method so that the equation 

V 24 
- 

0 

is satisfied for the boundary points. To achieve this, we note that in many cases it is 
possible to circumscribe circles around both the inner and outer boundaries. We now 
consider the conformal transformation of the annulus between these circular 
boundaries in the physical plane (the plane of curves /3 and cc or F, and 172) onto the 
annulus between the concentric circles in the transformed plane and take the 
coordinate ( as the angle traced out in a clockwise sense by the common radii in the 
transformed plane. Now two cases arise depending on whether the circumscribed 
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circles are concentric or not as shown in Figure 2. If the circumscribed circles are 
concentric, then their conformal transformation will again be concentric circles 
without any change in the ratio of the radii in the two planes [11, p. 208]. Thus in 
this case we select those values of the ordinates on F, and F2 which correspond to the 
abscissae 

(26) x=rscos(, x,,=rLcost, 

where rs and rL are the radii of the inner and outer circles circumscribing F, and r2 

respectively. 

\ ~~~/4 

(a) 

y~~~~~~~~~~~~~~~~~~~ 

* 2 

(b) 

FIGURE 2 

(a) Concentric circumscribed circles Cl and C2 of radii rs, rL respectively with 
center at the origin. (b) Nonconcentric circumscribed circles Cl and C2 of 
radii rs and rL and centers at z5 and ZL respectively 

If the circumscribed circles are nonconcentric (Figure (2b)), then using the 
conformal transformation of nonconcentric to concentric circles, Kober [13], we 
select those values of the ordinates on F, and F2 which correspond to the abscissae 
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given by the following expression. In this expression the quantity -y and other 
quantities are 

y = 1 for the outer boundary F2, 

rL d -t 
y = _| t for the inner boundary IF, 

d2 - (xs - XL) + (YS YL)2' 

(Xs , Ys) = center of the inner circle, 

(XL YL) = center of the outer circle, 

rs, rL = radii of the inner and outer circle, respectively, 

t = CrL 5 

(27) c k(d2 + rZ -r ) + {(d2 + rZ ) -4d2rZ}1/ 2rLd, 

T - STtan-'t Ys YL) 
Xs - 

XL 

x(() =[( - cycos ){xL(l - cy cos .) + cyyL sin 

+ rL(c cos I --y cos(~ - ))) 

-cy{yL(l - cy cos ) - cyXL sin t 

-rL(csin I +? ysin(t - I))}sin]/ (1 - 2c-ycos + c2y2). 

Having determri.ned the appropriate sets (x#((), y(t)) and (xo(j), yo(j)), we 

now calculate the radius ratios by using the formula 

(28) p = 2'|[x0,(J)cos -yj( )sin f] d(, 

where 

(29) a f2 | [x,(()cost -y (()sin] d(. 

These terms are obtained by the first term of the Laurent series as shown in [18]. 
The parametric difference n is connected in some manner with the "modulus" of 

the domain which, however, by itself is a separate problem (see, e.g., Burbea [3] and 

Gaier [9]). In this work we have defined q based on the knowledge of the radius 

ratio p0 through the simple formula 

(30) lnoo = n p0. 

2.3 Case of Nonisothermic Coordinates. We now consider the case of orthogonal 
coordinates t and -q when they are nonisothermic. In this case the element of length 
in the plane is given by 

(31) (ds)2 = g11 dt2 + g22 dq2, g22 # g1 I 

The governing equation for such a case is of course (11). Our aim now is to show 

that the solution for the case g22 =# g,1 can be obtained from the solution already 
developed for the case g22 = g11, by coordinate transformation. To carry out this 
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scheme, we follow Potter and Tuttle [17] and assume that the curves -1 = const, 
including the boundaries F, and F2 in the physical plane, are free from sources and 
sinks. This condition establishes a unique correspondence between the (-points on 
each pair of q = const lines. In the absence of sources and sinks we must have 

(32) div[grad 4(,q)] = 0, 

where 4(Qq) is an arbitrary differentiable function of -q and, as usual, grad 4'(q) is 
oriented along the normal to the curve n = const. Carrying out the differential 
operation in (32) and using the following expressions for orthogonal coordinates 

gradq1= and 12 
a a(g) 

in (32), we obtain 

d~2 
aa (In Fg II /g 22 )=-d2 /dq 

Writing dl/dq = l/v(nq) and denoting the arbitrary function due to integration by 
ln 4i(t), we obtain the result 

(33) figllj/g2 = tt(4)v(,q) = IIF. 

This result shows that for the case of orthogonal coordinates the ratio g1 1/g22 can be 
taken as a product of the positive functions t(() and v(n). The result in (33) also 
provides the condition for the two distinct families of orthogonal curves 

=const, = const 

to divide the physical plane in infinitesimal squares [5], as is shown below. 
We now introduce new coordinates ('(() and q'(q) as 

(34) ('f (t)dt, q' -f 

then 

9i = g111 /2, g22 = 2 

so that g22 =g1j, i.e., the coordinates (' and -q' are isothermic. 
Defining P' = ln g', and carrying out the transformation (34) in Eq. (11), we have 

3 a I a lF(2 + 1 ag11\ jL()(ia2' a2pI (35) a T i 1 aq FgF aqt p(,) a,2 a I,2 
Also, from (7) by using g12 0 O and by cross differentiation, we have 

~~(~) ?~~{ ) 
which, on using (34), yields 

(36) V2, =0. 

From (35) and (36) we conclude that the solution of (11) for the nonisothermic 
coordinates is the same as the solution of the equation 

a2p' a2p' 

an'2 aq'2 
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in the isothermic coordinates {', i'. In other words, if the solution of (14) is known then 
the solution of (11) can be obtained by a coordinate transformation ( = 0((), 'q = ftr) 
simply by substituting 0 and f in place of ( and 71 in (19). The salient feature of the 
preceding analysis is that the solution for the case g22 = g11 can be used to obtain 
the solution for the case g22 7& g11 by a coordinate transformation in a straightfor- 
ward noniterative manner. 

2.4 Coordinate Transformation. The procedure of transformation from the isother- 
mic coordinate {, -j to the nonisothermic coordinates {, iq is as follows. On 
transformation, the covariant metric coefficients transform as 

aXk ax' 

gij=gkla5 ax- 

so that, on using the equations g12 =, g22 =g1, we have 

(37) gI [ (at/a8)2 + (anq/at)2 jgI, g22 =(at/a )2 +? 
We now introduce the transformation 

(38) nt(&)' t1=f(oj), 

where + and f are continuously differentiable and satisfy the conditions 

0(o , A(rX0) = O, 
where 0 0 corresponds to 4 = 40 and q = 0 corresponds to j = 71A. Defining 

(39) X = do/d4, 0 = df/di1 

we obtain from (37) and (38) 

2 O 
(40) g22(1) = x2-g 1 I ,i). 

The value of g22 given in (40) must be used in (24) for the evaluation of x and y. 
Further, the prescribed forms in (38) are to be used in place of ( and q in the 
solution (19). It must be noted that the coefficients a0,. . . , dn, defined in (21), do not 
depend on the coordinate transformation. 

3. Numerical Method of Solution. Based on the formulation of the problem as 
discussed in the preceding section, we now have a noniterative algebraic computa- 
tional problem which can be handled in a straightforward manner. Having de- 
termined x(t) and y(() for both the inner and outer boundaries as described in 
Section (2.2), we first calculate (g11),8 and (g11),, and then P,(t) and POO(), 
numerically. Based on these distributions, the Fourier coefficients an, bn, Cn and dn 
are computed by numerical quadrature through the use of (21). Since these values of 
the coefficients are independent of the spacings between - = const lines, the same 
values are used when a redistribution of q = const lines is desired. Substituting the 
Fourier coefficients in (19) we determine the values of P(t, q) and hence of gI1(t, q ) 
for the whole annular region. A knowledge of the Fourier coefficients determines 
a(t, q) through (23) and so also the Cartesian coordinates through (24) by numerical 
quadrature. The value of p0 from (28) and (29) by numerical quadrature determines 

q through (30) and so of K in (20). 
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FIGURE 3 

Confocal ellipses. Semimajor axes 1.48, 5.0, and semiminor axes 0.5, 4.802 
respectively. Only 38 q= const lines shown for detail 

FIGURE 4 

A blunt body section with elliptical outer boundary 



GENERATION OF ORTHOGONAL COORDINATES 513 

FIGURE 5 

Nonconcentric circles: rs 1, rL= 2.5, zs = (0,0), ZL (1,0) 

FIGURE 6 

Joukowsky 's airfoil with slightly rounded trailing edge 
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FIGURE 7 

Nonconcentric ellipses. Size data same as in Figure 3. z5 (0 0), ZL (1, 0). 

_E~~~~~~~~~~~~~~7 

FIGURE 8 

Generated coordinates for a body having convex, concave and straight 
portions. Placement of outer boundary is decided by the radius of the 
osculating circles of the concave portions. 
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A computer program, [22], with the option of redistributing the coordinate lines in 
any desired manner (subject to the constraints on ( discussed in Section 2.2) has 
been written and used to generate the orthogonal coordinates for various annular 
regions as shown in Figures 3-8. All these runs are for the case of nonisothermic 
coordinates. For these example problems we have chosen the following forms of the 
functions q and f mentioned in (38). 

(41) (t)2 ( - ) 
(m - 0 

q0(-1 -1,) K('qThq') 
(42) fln) =- Nw( 4/1 K 

so that X, 0 defined in (39) are 

) X ~~27T 'q = 1 I 0-7A K] K (n np) 

where K > 1 is an arbitrary constant; t = and i1 = 7100 correspond, respectively, 
to = 2? and -q =q.. We treat ( and i1 as integers so that 

to= ( IMAX, 71 = 1,71 = JMAX. 

Since -q. is known from (30), hence, by specifying the numerical values of K and 
JMAX, we can create a desired mesh control in the -q direction. The value of K 
between 1 05 and 1 1 is quite sufficient, [23], in having a very fine grid spacing 
near the inner boundary. 

The number of terms to be retained in the series (19) is usually small for convex 
inner and outer boundaries, though we have retained (IMAX - 1)/2 number of 
coefficients in each computation. This number is the optimum number of terms in a 
discrete Fourier series having IMAX number of points in one period, [12]. The 
average computer time for the complete solution on the UNIVAC 1100/80 for 
IMAX = 73, JMAX = 60 field is about 2.75 minutes. 

4. Conclusions. The Gaussian equation for a plane under the condition of 
orthogonality of coordinates has been used to form a basis for generating orthogonal 
coordinates in plane annular regions. The resulting method is noniterative and 
requires only the numerical evaluation of integrals by quadratures and summation of 
finite (truncated) Fourier series. The method works very effectively for smooth and 
convex boundaries of any shape or orientation. However, in the case of concave 
inner boundaries, the outer boundary has to be placed at such a distance so as to 
avoid intersecting normals, [7]. Further, sharp turns and corners are not admissible 
and have to be rounded to avoid singularities in the metric data. 
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